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We consider a thin layer of a viscous fluid flowing down a uniformly heated planar
wall. The heating generates a temperature distribution on the free surface which in
turn induces surface tension gradients. We model this thermocapillary flow by using
the Shkadov integral-boundary-layer (IBL) approximation of the Navier–Stokes/
energy equations and associated free-surface boundary conditions. Our linear stability
analysis of the flat-film solution is in good agreement with the Goussis & Kelly (1991)
stability results from the Orr–Sommerfeld eigenvalue problem of the full Navier–
Stokes/energy equations. We numerically construct nonlinear solutions of the solitary
wave type for the IBL approximation and the Benney-type equation developed by
Joo et al. (1991) using the usual long-wave approximation. The two approaches give
similar solitary wave solutions up to an O(1) Reynolds number above which the
solitary wave solution branch obtained by the Joo et al. equation is unrealistic, with
branch multiplicity and limit points. The IBL approximation on the other hand has
no limit points and predicts the existence of solitary waves for all Reynolds numbers.
Finally, in the region of small film thicknesses where the Marangoni forces dominate
inertia forces, our IBL system reduces to a single equation for the film thickness that
contains only one parameter. When this parameter tends to zero, both the solitary
wave speed and the maximum amplitude tend to infinity.

1. Introduction
A layer of viscous fluid falling down an inclined uniformly heated plane, is subject to

surface and Marangoni instabilities. In their pioneering study of this problem, Goussis
& Kelly (1991) performed a linear stability analysis based on Orr–Sommerfeld and
linearized energy equations. They provided a detailed numerical solution of the per-
tinent eigenvalue problem and demonstrated that a heated wall has a destabilizing
effect on the free surface while a cooled wall stabilizes the flow. The thermocapillary
instability of a horizontal liquid layer heated from below was considered by Goussis &
Kelly (1990) while a number of theoretical works have been devoted to the thermoca-
pillary instability in the case of a temperature gradient along the liquid layer (Smith &
Davis 1983a, b).
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In this study we consider the problem of a thin liquid film falling down a uniformly
heated plane for small and moderate Reynolds numbers (in the region ∼10–30).
Particular emphasis is given to the nonlinear regime of the surface-tension-gradient
Marangoni-driven instability. Our analysis is based on the integral-boundary-layer
(IBL) approximation of the Navier–Stokes/energy equations and free-surface boun-
dary conditions. This approach in the absence of Marangoni effects was introduced
by Shkadov (1967, 1968) in two dimensions and by Demekhin & Shkadov (1984) in
three dimensions. It combines the boundary-layer approximation of the Navier–Stokes
equation assuming a self-similar parabolic velocity profile and long waves on the free
surface with the Kármán–Pohlhausen averaging method in boundary-layer theory.
This ad hoc approach results in a system of three coupled nonlinear partial differential
equations for the evolution of the local film height and flow rates in the streamwise
and transverse directions respectively. When thermal effects are present, we expect
an additional equation for the interface temperature field. The IBL approximation in
this case was recenty derived by Kalliadasis, Kiyashko & Demekhin (2003) in their
study of the thermocapillary instability of a thin liquid film heated from below by a
local heat source.

This derivation is reviewed in § 2. In § 3 we study the linear stability of the trivial
solution with respect to three-dimensional disturbances and we show that by increas-
ing the Marangoni number the instability to three-dimensional disturbances becomes
stronger. The remainder of the paper focuses on two-dimensional disturbances. We
demonstrate that the role of the Marangoni effect is to amplify and increase the
instability of the downstream propagating surface mode such that this mode is
characterized by an unusually large growth rate for very thin films. This points to the
possibility of very interesting behaviour of the nonlinear solutions in this region.

In § 4 we derive reduced models obtained from our Shkadov model in certain
regimes of the parameter space. In particular, when the film thickness tends to zero
we derive a single equation with only one parameter, δ, and valid for all flow condi-
tions which indicates a universal behaviour as a function of δ in the limit of zero
film thickness. In § 5 we construct numerically nonlinear solutions of solitary wave
type for the full IBL and the IBL with the free-surface temperature field slaved
to the film thickness. We find that the difference between the two approaches for
the temperature field becomes large in the region of moderate Reynolds numbers
where the convective terms of the energy equation are important. On the other hand,
the feedback of the temperature field to the film thickness in this region is small, since
the Marangoni forces are not important for thick films in comparison with inertia
forces. An impressive feature of our solitary wave solution branch for the speed and
maximum amplitude of the solitary waves as a function of Reynolds number is that
as the Reynolds number approaches zero, the solitary wave solution branch tends to
infinity. Finally, we contrast our solitary wave solution branch with the Joo, Davis &
Bankoff (1991) model based on the long-wave lubrication approximation.

2. Formulation
We consider a thin liquid film of viscosity µ, surface tension σ and density ρ

falling down a uniformly heated planar inclined wall with inclination angle θ with
respect to the horizontal direction. Figure 1 sketches the flow situation. The wall is
a perfect heat conductor fixed at temperature T = Tw . This induces a thermocapillary
Marangoni effect which affects the free surface and fluid flow.
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Figure 1. Sketch of the profile geometry for flow down a heated inclined plane. The local
film thickness is h(x, z, t); h0 is the average film thickness.

Because of the extreme complexity of the full Navier–Stokes equation with nonlinear
free-surface boundary conditions, most nonlinear studies on thin film flows (with and
without Marangoni effects) have been based on the long-wave lubrication approxi-
mation first developed by Benney (1966) (see also the review by Oron, Davis & Bankoff
1997). As was shown by Salamon, Armstrong & Brown (1993) and Ramaswamy,
Chippada & Joo (1996) who compared the long-wave expansion with the full Navier–
Stokes equation, Benney’s approximation is exact in the limit Re � 1 but it breaks
down at an O(1) Reynolds number. With this approximation, the Navier–Stokes
equation reduces to a single, highly nonlinear, partial differential equation commonly
known as the evolution equation for the location of the interface. In this study we
adopt the integral-boundary-layer approximation (IBL) first introduced by Shkadov
(1967). Unlike the usual long-wave lubrication approximation, where relative orders
of the film amplitude and the governing dimensionless groups are assigned a priori,
the IBL equation is derived with only the long-wave expansion and without overly
restrictive limitations on the order of the amplitude and the dimensionless groups.
The original IBL approximation, though, was restricted to free-surface thin-film
flows in the absence of thermal effects. The approximation was recently extended by
Kalliadasis et al. (2003) to include heat transport effects and to obtain an averaged
energy equation for the temperature distribution on the free surface of a film heated
from below by a local heat source, Tw = f (x). We follow a similar approach for
the problem of a film falling down a wall maintained at constant temperature. The
derivation of the IBL approximation in this case parallels the one given by Kalliadasis
et al. (2003) and the reader is referred to that study for details.
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The starting point of the IBL approach is to assume long waves in both the x- and
z-directions, i.e. ∂/∂x, ∂/∂z � ∂/∂y and v, w � u with u, v and w the x, y and
z components of velocity respectively. The full system of Navier–Stokes/energy
equations and wall/free-surface boundary conditions has the trivial solution h = h0,
u0 = (g sin θ/ν)[h0y − (y2/2)], v = w = 0, and T 0 = T 0

s (y/h0) with the temperature at
y = h0 given by T 0

s =(λh0/k)Tair/[1 + (λh0/k)] where g is the gravitational acceleration
and ν = µ/ρ the kinematic viscosity. Also, k is the thermal conductivity of the liquid
phase and λ the heat transfer coefficient describing the rate of heat transport from the
liquid to the ambient gas phase at the constant temperature Tair through the long-wave
approximation of Newton’s law of cooling at the interface: k∂T /∂y + λ(T − Tair) = 0.
Notice that without loss of generality we assume Tw = 0 which of course implies
T 0

s < 0 and Tair < 0, i.e. cooling from the wall side and setting Tw =0 thus makes the
surface and air temperatures positive, and excludes the possibility of thermocapillary
destabilization of the interface.

We can now utilize the trivial solution to introduce the non-dimensionalization

(x, y, z) → (x, y, z)h0, h → hh0, (u, v, w) → (u, v, w)u0,

t → h0

u0

t, P → ρu2
0P, T → T

(
−T 0

s

)
,

where u0 = gh2
0 sin θ/3ν is the average velocity of the flat film, h0/u0 the time an

interfacial particle tranverses a distance h0 and P the pressure. Note that we can
either use a long scale in the x- and z-directions and h0 in the y-direction to non-
dimensionalize the momentum/energy equations and derive the leading-order long-
wave equations or simply neglect from the outset the higher-order terms and write
down only the leading-order terms of the dimensional momentum/energy equations
followed by non-dimensionalization of all lengthscales with h0. After all, we do know
that, to leading order, viscous diffusion in the y-direction must balance inertia and
the pressure gradient. Both approaches lead to the same dimensionless equations. Of
course, it would seem that scaling all lengths with h0 (this is effectively the scaling used
originally by Shkadov) would imply that the slope of our waves is O(1). However, we
shall demonstrate in § 5 that in all cases our solitary waves do obey the long-wave
assumption.

In terms of the above non-dimensional variables, the equations of motion, energy
equation and wall/free-surface boundary conditions are identical to those given by
Kalliadasis et al. (2003) with f ≡ 0. The governing dimensionless groups, namely the
Reynolds, Weber, Péclet, Marangoni and Biot numbers, in terms of the parameters
of the problem considered here, are given by

Re =
1

3

gh3
0

ν2
sin θ, (1a)

We =
σ0

ρh0u
2
0

=
32σ0ν

2

ρg2h5
0(sin θ)2

=
31/3γ

Re5/3(sin θ)1/3
, (1b)

Pe = RePr = Re
ν

a
, (1c)

Ma =
κ
(
−T 0

s

)
µu0

=
3κ

(
−T 0

s

)
ρgh2

0 sin θ
, (1d)

Bi =
λh0

k
, (1e)



Thermocapillary instability of a falling film 307

where σ0 denotes the surface tension at a reference temperature T0, a = k/ρcP the
thermal diffusivity with cP the constant-pressure heat capacity, and κ is defined from
the linear approximation for the surface tension σ = σ0 − κ(Ts − T0) (κ > 0 for typical
liquids). The Weber number here expresses the relative importance of surface tension
and inertia forces; γ = σ0ρ

−1ν−4/3g−1/3 is the Kapitza number, a popular parameter
among the Russian school, which is a function of the fluid properties only and not the
flow conditions. Pr is the Prandtl number and Pe the Péclet number that expresses
the relative importance of convection and conduction. Finally, the Marangoni number
expresses the relative importance of thermocapillary and viscous stresses.

Our system is therefore governed by five dimensionless groups: Re, We, Ma, Bi
and Pr. Since there is a large number of parameters, a complete investigation over
the entire parameter space is almost an impossible task. However, we can reduce
the number of relevant dimensionless groups by fixing the liquid and expressing our
groups in terms of parameters which depend only on the physical properties of the
liquid. For example,

Re =
2

3
χ sin θ, Ma =

3

2χ2/3 sin θ

Bχ1/3

1 + Bχ1/3
M,

Bi = Bχ1/3, We =
9γ

25/3

1

χ5/3(sin θ)2
,

where

χ =
gh3

0

2ν2
, M =

κ(−Tair)

ρ

(
2

gν4

)1/3

, B =
λ

k

(
2ν2

g

)1/3

are the Reynolds, Marangoni and Biot numbers respectively adopted by Goussis &
Kelly. Notice that M and B are independent of h0 and depend only on the physical
properties of the liquid phase (like the Kapitza number γ ), the heat transfer coefficient
of the liquid–gas interface and the temperature difference Tw − Tair (recall that we
set Tw = 0 such that Tair < 0). Hence, for a given liquid–gas system the only relevant
parameters are χ, M and inclination angle θ (and the vertical-plane case is a two-
parameter problem only).

If the liquid phase is water at 25 ◦C, κ =5 × 10−5 kg s−2 K−1, k =0.607 Wm−1 K−1,
cP =4.18 J g−1 K−1, µ = 10−2 g cm−1 s−1, ρ = 1 g cm−3 and σ = 61 dyn cm−1 (see for
example Reid, Prausnitz & Sherwood 1977). This gives Pr � 7 and γ � 3000. Regarding
the Biot number, in the absence of experimental data for heat transfer coefficients at
liquid–gas interfaces, we assume the value B = 10 taken by Goussis & Kelly. Note
that our definition Bi= λh0/k implies that Bi is proportional to the film thickness
h0 with the proportionality coefficient λ/k a function of the fluid properties. This
dependence on h0 has been made explicit by Goussis & Kelly who, as we pointed out
above, used B as the Biot number. Hence, changing h0 or equivalently the Reynolds
number implies changing Bi (although we are not aware of any experimental data
which confirm the relationship Bi ∼ χ 1/3). Finally, for water at 25 ◦C, M � 2.45
T

where 
T is in K. Hence, for a temperature difference 
T = 10 K, well within an
achievable range, we obtain M � 25.

The governing equations and boundary conditions can then be simplified using the
self-similar profile introduced by Kalliadasis et al. (2003). The basic assumption here
is that a parabolic velocity profile which satisfies the x-component of the equation
of motion for zero Reynolds number persists even for moderate Reynolds numbers
when the free surface is no longer flat. Therefore, the variation in the direction of flow
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is assumed to be slow compared to that in the normal and transverse directions (the
same is also true for the long-wave theory). As a consequence, the viscous dissipation
depends on a single space variable. This assumption is obviously violated at larger
Reynolds numbers where the second-order viscous terms in the normal and transverse
directions neglected here become important.

The assumption of a parabolic velocity profile for small to moderate Reynolds
numbers is in agreement with the numerical studies by Geshev & Ezdin (1985) and
Demekhin, Kaplan & Shkadov (1987) who solved numerically the boundary-layer
equations (which unlike IBL do not require any a priori assumptions for the velocity
profile) and found that for Re ∼ 10–30 the parabolic profile is a good approximation
throughout a solitary wave except in a small neighbourhood of a ‘dimple’ that
develops in front of the solitary hump where a deviation from the parabolic profile
was observed. (This dimple is the first in a series of bow waves that connect the steep
front edge of a solitary wave to the flat film ahead.) We note that it is well known that
wave evolution in a falling film for moderate Reynolds numbers is characterized by
a train of soliton-like coherent structures with almost the same amplitude and which
interact indefinitely with each other (see Chang 1994 for a review). The parabolicity
of the velocity profile has also been verified experimentally for falling liquid films
(Alekseenko, Nakoryakov & Pokusaev 1994) in the regime of moderate Reynolds
numbers. Measurements of the velocity profile in these solitary waves indicate that
the profile is parabolic throughout except perhaps in a small neighbourhood of the
dimple.

This velocity profile is substituted into the momentum equations which are then
integrated from y = 0 to y =h. The final result is (see Kalliadasis et al. 2003 for
details)

∂q

∂t
+

6

5

∂

∂x

q2

h
+

6

5

∂

∂z

qp

h
+

3 cot θ

Re
h

∂h

∂x
= Weh

∂K

∂x
+

3

Re

(
h − q

h2

)
− 3Ma

2Re

∂Ts

∂x
, (2a)

∂p

∂t
+

6

5

∂

∂x

qp

h
+

6

5

∂

∂z

p2

h
+

3 cot θ

Re
h

∂h

∂z
= Weh

∂K

∂z
− 3

Re

p

h2
− 3Ma

2Re

∂Ts

∂z
, (2b)

∂h

∂t
+

∂q

∂x
+

∂p

∂z
= 0, (2c)

where q and p are the flow rates in the x- and z-directions respectively, Ts the
temperature of the interface and K the curvature of the free surface in the long-wave
approximation, i.e. K = hxx + hzz.

Let us now turn to the IBL treatment of the energy equation. This was discussed by
Kalliadasis et al. (2003) and the averaged energy equation here is identical to the one
obtained in that study by setting f = 0. Here we show that the IBL treatment of the
energy equation adopted by Kalliadasis et al. (2003) is effectively a ‘tau’ method. Like
the momentum equations, the first step is the assumption of a self-similar temperature
profile

T (x, y, z, t) = b(x, z, t)g(η),

where the amplitude b and the test function g have to be specified. Such a functional
form was originally proposed by Zeytounian (1998) for the case Bi = 0. Zeytounian

used for the amplitude b the averaged temperature across the film
∫ h

0
T dy. Here we

choose to put the emphasis on the temperature at the interface Ts since it appears
directly in Newton’s law of cooling and the assumed velocity profile. Therefore, b ≡ Ts

and g(1) = 1. In fact, like the velocity profiles, we choose the temperature profile
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corresponding to the flat-film solution:

T = Tsη. (3)

Hence, the assumption here is that the linear temperature profile obtained for a
flat film T 0 = T 0

s (y/h0) persists even when the interface is no longer flat. It is clear
that this temperature distribution does not satisfy Newton’s law of cooling, in fact
this mixed Dirichlet–Neumann boundary condition cannot be satisfied simply by
choosing g. Hence, in weighted residual methods terminology, the approximation in
(3) is a variant of the Galerkin method invented by Lanczos, called the ‘tau’ method
(Gottlieb & Orszag 1977), in which the trial function does not satisfy the equation or
(all) boundary conditions. Integrating the energy equation from y =0 to y = h shows
that the usual Kármán–Pohlhausen method cannot be applied for the energy equation
as it was for the momentum equation. Let us take for example the dissipative term
whose integration over the film thickness yields∫ h

0

Tyy dy = Ty |y=h − Ty |y=0.

The gradient on the interface Ty |y=h is given by Newton’s law of cooling; however
the gradient on the wall is unknown. This difficulty can be easily overcome by simply
applying a weight function W (η) with η = y/h to the energy equation before its
averaging. After integrating by parts, the diffusive term now becomes∫ h

0

W

(
y

h

)
Tyy dy =

[
W

(
y

h

)
Ty

]h

0

− 1

h

[
W ′

(
y

h

)
T

]h

0

+
1

h2

∫ h

0

W ′′
(

y

h

)
T dy.

Notice that taking W to be the parabolic profile 2η − η2 gives∫ h

0

(2η − η2)Tyy dy = Ty |y=h − 2

h2

∫ h

0

T dy

which leads to the choise made by Zeytounian (1998) of an amplitude corresponding
to the averaged temperature across the flow. In our case, the weight function is taken
to be linear, W = η. The averaged diffusive term then becomes∫ h

0

ηTyy dy = Ty |y=h − 1

h
(Ts − T |y=0) ≡ −Bi(Ts − Tair) − 1

h
Ts.

Hence, we multiply the energy equation with the weight function η, we perform
integrations by parts and evaluate the boundary terms which involve Ty from Newton’s
law of cooling and not (3) (which of course does not satisfy Newton’s law of cooling).
Thus we apply all boundary conditions prior to substituting the linear approximation
in (3). As a result, although (3) does not satisfy the free-surface boundary condition,
the averaged energy equation does. The final averaged energy equation is

∂Ts

∂t
+

7

40

Ts

h

(
∂q

∂x
+

∂p

∂z

)
+

27

20

q

h

∂Ts

∂x
+

27

20

p

h

∂Ts

∂z

+
3

Pe

[
Bi(Ts − Tair)

h
+

Ts

h2

]
=0. (4)

Equations (2a–c) and (4) are the basic equations for the analysis to follow.
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3. Linear stability of the trivial solution
The system of equations (2a–c), (4) admits the trivial solution

h = 1, q = 1, p = 0, (5a)

Ts = −1, Tair = −1 + Bi

Bi
. (5b)

We consider the stability of this solution to three-dimensional infinitesimal
perturbations in the form of normal modes:

h = 1 + ĥ exp[i(αx + βz − ωt)], (6a)

q = 1 + q̂ exp[i(αx + βz − ωt)], (6b)

p = p̂ exp[i(αx + βz − ωt)], (6c)

Ts = −1 + T̂ exp[i(αx + βz − ωt)]. (6d)

Substituting (6) into (2a–c), (4) and linearizing for ĥ, q̂, p̂, T̂ � 1, yields the disturbance
equations

−iωq̂ +
6

5
iα(2q̂ − ĥ) +

6

5
iβp̂ +

3 cot θ

Re
iαĥ = −iα(α2 + β2)Weĥ

+
3

Re
(3ĥ − q̂) − 3Ma

2Re
iαT̂ , (7a)

−iωp̂ +
6

5
iαp̂ +

3 cot θ

Re
iβĥ = −iβ(α2 + β2)Weĥ − 3

Re
p̂ − 3Ma

2Re
iβT̂ , (7b)

−iωĥ + iαq̂ + iβp̂ = 0, (7c)

−iωT̂ − 7

40
i(αq̂ + βp̂) +

27

20
iαT̂ +

3

Pe
[(1 + Bi)T̂ + ĥ] = 0, (7d)

which form a linear algebraic system with constant coefficients. For the system to
have non-trivial solutions it is necessary and sufficient that its principal determinant
be equal to zero. This yields an algebraic eigenvalue problem of the form

det||A − iωI|| = 0

for the eigenvalue ω, where A is a 4 × 4 matrix and I is the unitary matrix. This is
the dispersion relationship for ω as a function of α and β . Notice that the three-
dimensional stability problem defined by system (7) cannot be transformed to an
equivalent two-dimensional problem and hence Squire’s theorem is not valid for thin
films in the presence of thermocapillary Marangoni effects.

The case of a thin liquid film falling down an inclined plane in the absence of
Marangoni effects deserves special attention: clearly from (2a–c), (4) with M = 0, the
hydrodynamic and thermal problems are decoupled, so that the temperature field
does not have any effect on the film thickness. The energy equation by itself is of the
diffusion-type and hence cannot induce instability. Therefore, Bi, although important
for the temperature field, does not affect the stability boundary for M = 0. With (7d)
decoupled from (7a–c), the dispersion relation can be readily obtained analytically:
multiply (7a) by α and (7b) by β and add the resulting equations. The new equation
contains the term αq̂ +βp̂ =ωĥ from (7c) (notice that for M 	=0 the linearized energy
equation in (7d) has some terms not proportional to αq̂ +βp̂ and that is why Squire’s
transformation does not work in this case). Separating real and imaginary parts and
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Figure 2. Neutral curve for stability of a flat film with respect to three-dimensional distrur-
bances. α0 is the neutral wavenumber for two-dimensional disturbances. In all our calculations
for figures 2–4, γ = 3000, Pr = 7, B = 10. (a) χ = 10, M = 0 and three different inclination
angles, 90◦, 15◦ and 10◦; (b) χ = 0.1, θ =90◦ and three different Marangoni numbers, M = 0,
0.1 and 10.

setting ωI =0 yields the neutral curve

(α2 + β2)2We = 3α2 − 3 cot θ

Re
(α2 + β2) (8a)

with a phase velocity

c0 = 3 (8b)

and such that the neutral wavenumber for two-dimensional waves is

α0 =

√
3

We

(
1 − cot θ

Re

)
. (8c)

Notice that as a consequence of Squire’s transformation for M = 0, the most unstable
disturbance is a two-dimensional one; obviously, in the nonlinear regime this might
no longer be the case.

For a vertical film, (8a) gives the expected result for the neutral curve

(α2 + β2)2We = 3α2

first obtained by Demekhin & Shkadov (1984). This curve has two branches in the
(α, β)-plane: α2 +β2 = ±(3/We)1/2α. The two branches are the miror image of each
other with respect to the β-axis but the one with the negative sign does not have
physical meaning. The branch with the positive sign is shown in figure 2(a) where
both α and β are normalized with the neutral wavenumber for two-dimensional
waves given by (8c). For θ = π/2 both branches are circles while for θ < π/2 the
neutral curve takes on a ‘figure-of-eight’ shape. The effect of inclination angle on
the neutral curve is shown in the figure: by reducing θ the instability region shrinks
and three-dimensional effects become weaker, as was first shown by Demekhin &
Shkadov (1984). As θ decreases the stability boundary is stretched in the α-direction
and eventually, for θ = 0, degenerates to a straight line parallel to that direction.

For M 	= 0, the eigenvalue problem in (7) has to be solved numerically. Figure 2(b)
depicts the stability boundary for three-dimensional disturbances on a vertical falling
film in the presence of Marangoni effects. The instability region in the β-direction
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increases as M increases and hence the Marangoni effects enhance the three-
dimensional instability. Now, since Squire’s transformation is no longer valid, there
is a possibility that three-dimensional waves might be more unstable than two-
dimensional. But for this purpose, M has to be large enough, since for M � 1
we anticipate that the system will behave in a fashion similar to the M =0 case.
A complete investigation of this issue is beyond the scope of the present study.
Note, however, that Goussis & Kelly (1991) showed that two regions of Marangoni
instability (interfacial waves and cells) coalesce into one region for certain values of
the governing parameters and it is reasonable to expect that exactly at this point
three-dimensional waves might be more unstable.

For the remainder of our study we shall consider only two-dimensional disturbances
(β =0). In this case we can obtain an explicit form for the dispersion relation:

α2c3 + d2c
2 + d1c + d0 = 0, (9)

where

d2 =
1

4Pe Re
[12iαPe − 15α2Re Pe + 12iαRe(1 + Bi)],

d1 =
1

400Pe Re
[105Maα2Pe − 1200α2Pe cot θ − 400α4We Re Pe − 5220iαPe

− 3600(1 + Bi) − 2880iαRe(1 + Bi) − 1776α2Re Pe],

d0 =
1

400Pe Re
[1440iαRe(1 + Bi) + 1800iαMa + 4860iαPe + 10800(1 + Bi)

+ 1620α2Pe cot θ − 3600iα cot θ(1 + Bi) − 648α2Re Pe

+ 540α4We Re Pe − 1200iα3We Re(1 + Bi)].

Let us now obtain the critical condition for the onset of instability when β = 0. For
this purpose we expand the phase velocity as

c ∼ c0 + iαc1 + α2c2 + iα3c3 (10a)

(it turns out that even terms of this expansion are real and odd purely imaginary)
which when substituted in (9) yields

c1 = Re +
Ma

2(1 + Bi)
− cot θ, (10b)

c2 =
6

5
Re

(
cot θ − Re − Ma

2(1 + Bi)

)
+

Ma Pe

16(1 + Bi)2

(
7

5
Bi − 3

)
, (10c)

c3 = −133

75
Re3 +

7

480

Ma2Pe

(1 + Bi)2
− 1

12

Ma2Pe

(1 + Bi)3
+

77

1600

Ma Pe2

1 + Bi

− 121

800

Ma Pe2

(1 + Bi)3
− 1

3
We Re − 1

3
Re(cot θ)2 +

1

3

Ma Re cot θ

1 + Bi

− 1

12

Ma2Re

(1 + Bi)2
+

158

75
Re2 cot θ − 79

75

Ma Re2

1 + Bi
− 149

300

Ma Re Pe

(1 + Bi)2

+
161

1200

Ma Re Pe

1 + Bi
+

1

6

Ma Pe cot θ

(1 + Bi)2
− 7

240

Ma Pe cot θ

1 + Bi
, (10d)

with c0 = 3 as expected from (8). Equation (9) has three roots for the eigenvalue c. The
expansion in (10) gives the only root that can become unstable. The other two roots
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are always stable and will be discussed later on. From ωI =αcI ∼ α2c1 +α4c3 + · · · ,
the onset of instability occurs at c1 = 0 which gives the critical condition

Re +
Ma

2(1 + Bi)
= cot θ. (11a)

This relation defines the critical Reynolds number, Re∗ = cot θ − Ma/(2(1+Bi)), above
which the flow loses stability. For Ma =0, Re∗ = cot θ (alternatively, set the neutral
wavenumber in (8c) equal to zero). In terms of the variables χ , M and B introduced
in the previous Section, (11a) can be written as

(χ sin θ)2 +
9

8

Mχ1/3

(1 + Bχ1/3)
=

3

2
χ cos θ. (11b)

This condition has the same functional form as the one derived by Goussis &
Kelly (1991) for two-dimensional waves at criticality, but the coefficients are slightly
different: 9/8 and 3/2 instead of 15/16 and 5/4 obtained by Goussis & Kelly, i.e. a 20%
error. A similar discrepancy is found for the critical Reynolds number predicted by
IBL in the absence of Marangoni effects, i.e. cot θ , instead of (5/6) cot θ as obtained
by a direct Orr–Sommerfeld stability analysis of the full Navier–Stokes equations
and by the usual long-wave lubrication approximation. In fact, IBL does not predict
very accurately neutral and critical conditions, except for large inclination angles;
indeed for a vertical falling film, and in the absence of Marangoni effects, Re∗ = 0 so
that the flow is unstable for all Reynolds numbers. For all other inclination angles,
IBL introduces an error that increases as the inclination angle decreases (however,
IBL does capture qualitatively the linear stability properties of the system). The
discrepancy is simply due to the velocity profile assumed in the Galerkin expansion
of the Skhadov method: self-similar parabolic profile across the film (see also the
discussion by Ruyer-Quil & Manneville 2002). Although this profile seems to be
in agreement with the experiments by Alekseenko et al. (1994), and hence does
capture most of the physics, corrections to the profile, known already to exist at
first order in the film parameter from the long-wave expansion, are important for
an accurate prediction of the linear instability threshold. Such corrections in the
absence of Marangoni effects have been obtained by Ruyer-Quil & Manneville (1998,
2000, 2002) for the falling film problem using high-order Galerkin expansions. These
higher-order IBL models accurately predict conditions at criticality. Ruyer-Quil et al.
(2003) have recently developed such higher-order models for the falling film problem
in the presence of Marangoni effects.

Far from criticality the neutral curve must be obtained numerically. Figure 3(a)
depicts the neutral stability curve for a vertical falling film with γ = 3000, Pr= 7,
B = 10 and different temperature differences 
T , or Marangoni numbers M . The
instability region is located above the neutral curve. In addition to the curves shown
in the figure, α = 0 is also a neutral curve. For M =0 and as χ → 0 (Re → 0) the neutral
wavenumber also approaches zero. With M > 0, the region of instability increases.
Now as χ → 0, the neutral wavenumber α0 does not tend to zero but the neutral
curves intersect the α-axis at values that increase as M increases. Indeed, for a vertical
falling film and in the absence of Marangoni effects, the destabilizing inertia terms
are vanishing as Re → 0, but for M 	= 0 and as Re → 0 the destabilizing forces are
surface forces which are still present for small Re. As is also evident from the figure,
the influence of the Marangoni instability is larger for small χ or small thicknesses
where the neutral wavenumber is finite.
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Figure 3. Neutral stability curves for different Marangoni numbers, M . (a) θ =90◦. The
instability region is located above the neutral curves; (b) θ = 15◦. For M =40, 60 the instability
region is located above the upper neutral curve and below the lower neutral curve. For M = 80,
the instability region is located to the left of the neutral curve. The stability curves for M = 40
and M = 60 can be continued in the α → 0 regime by using the critical condition in (11b).

Let us note that the long-wave expansion for the dispersion relation in (10a) predicts
that the neutral wavenumber α0 with zero growth rate occurs at zero wavenumber

and at
√

−(1/c3)(Re − Re∗) (for small wavenumbers and hence small Re − Re∗) so
that α0 → 0 as Re − Re∗ → 0. Hence, the instability is a long-wave variety with a
maximum growing linear mode at criticality with a wavenumber that is exactly zero.
However, from figure 3(a), for θ = π/2 and M 	= 0, α0 is finite and does not tend to
zero near criticality, i.e. as χ → 0. Hence, (10a) is valid only for M = 0 when θ = π/2.

Figure 3(b) shows the neutral stability curves for an inclined plane with θ =15◦.
Again, α = 0 is also a neutral curve. For M = 0 there is only one region of instability,
located above the neutral curve. This is the well-known surface instability that occurs
if the Reynolds number is larger than a critical value (≡ cot θ from (11a)). For finite
M there exists a second region of instability if χ is smaller than a certain value.
Instability now occurs above the upper neutral curve and below the lower neutral
curve. The χ values at which the two branches of the neutral curve intersect the
χ-axis for finite M can be easily obtained from (11b). As M increases these two
values approach each other and eventually at a sufficiently large M the two χ values
are the same. For larger values of M the two branches merge into one and now the
film is unstable for all values of χ , at least for large-wavelength disturbances (the
instability region is located to the left of the neutral curve). These results were first
obtained by Goussis & Kelly (1991). Comparison with the neutral stability curves in
the Goussis & Kelly study show that IBL captures well the variation of the stability
boundaries with α and M . There is, however, a difference between our neutral curves
in figure 3(b) and the original curves in the Goussis & Kelly study with a maximum
error introduced by IBL of the order of 20%.

The long-wave expansion for the dispersion relation in (10a) is valid near the
critical points of the stability boundaries in figure 3(b) (these are the points where
the neutral stability curves intersect the χ-axis) or when the single neutral stability
curve in figure 3(b) (for M larger than a critical value) is very close to the χ-axis. But
as was remarked above, (10a) is not valid as χ → 0 since the neutral wavenumber
does not tend to zero. However, the lower critical point (the point where the lower
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Figure 4. (a) Growth rate, αc
(1)
I , of the surface mode propagating downstream with θ = 90◦

and M = 80. The solid line is for χ = 0.01 and the dashed line for χ =20. The maximum
growth rate for χ = 20 is 0.04 – contrast with a maximum growth rate of �1 for χ = 0.01.

(b) Growth rates, αc
(2,3)
I , for the upstream propagating surface mode and Marangoni mode

with θ = 90◦, χ = 0.01 and M = 80. (c) Growth rates for the upstream propagating surface

mode and Marangoni mode with θ = 90◦, χ = 20 and M = 80. (d) Phase velocity, c
(k)
R , of all

modes for θ = 90◦, χ = 0.01 (solid lines), χ = 20 (dashed lines) and M = 80.

neutral stability curve intersects the χ-axis) moves towards the origin when M → 0
and θ = π/2, so that the expansion in (10a) is also valid for M = 0, θ = π/2 and χ → 0.

We now return to the full dispersion relation in (9). Two of the roots correspond to
two surface waves propagating downstream and upstream respectively, and the third
root is a Marangoni mode. For M = 0, this root is obtained from the energy equation
which is decoupled from the hydrodynamic problem in this limit. The three roots
can then be easily traced as we increase M . Figure 4(a) shows the growth rate αcI

as a function of wavenumber α for the mode propagating downstream with θ = 90◦,
M = 80 and two values of χ . Evidently, for χ = 0.01, this mode is strongly unstable
with a maximum growth rate of approximately 1. Hence, the usual interfacial mode in
the absence of Marangoni effects is strongly amplified in the region of small χ when
Marangoni effects are present, consistent with the neutral stability curves in figure 3(a).
This strong instability that manifests itself through large growth rate also implies an
interesting behaviour for the nonlinear solutions in the region χ � 1. Indeed, we shall
demonstrate that both amplitude and speed of the solitary waves in this region blow
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up at infinity. Notice that the cut-off wavenumber (above which the growth rate is
stable) is small and hence the long-wave assumption is not violated. This cut-off
wavenumber approaches a limiting value as χ → 0 with α = 0 always a neutral mode,
in agreement with figure 3(a).

For the relatively large value χ = 20 where the influence of the Marangoni effect
is small, the maximum growth rate now is approximately 0.04, almost 20 times
smaller than the maximum growth rate for χ = 0.01. However, the region of unstable
wavenumbers is now larger than the one for χ = 0.01. Also, the cut-off wavenumber
is small and the long-wave assumption is not violated.

The two other modes are strongly decaying as shown in figures 4(b) and 4(c), with
the Marangoni mode decaying faster than the upstream propagating surface mode.
In fact, the Marangoni mode is stable for all values of θ , χ and M . Hence, the role
of the Marangoni effect is to amplify the usual hydrodynamic mode of instability for
M = 0 and not to introduce a new unstable mode. Notice that for χ = 0.01 the two
roots coalesce at a particular value of α. Finally, the growth rate of the two stable
modes tends towards −∞ as criticality is approached. For χ =20, the growth rates of
the two stable modes are now much larger than the ones observed for small χ .

In figure 4(d) we depict the phase velocity, cR , of all modes for θ = 90◦, M = 80
and two values of χ . For χ = 0.01, the phase velocity of the unstable mode is close to
3 away from the region of very small wavenumbers, so that these interfacial waves
travel steadily downstream with a velocity roughly three times the average velocity
of the flat film. However, for very small wavenumbers, the phase velocity deviates
from 3 – recall, that the long-wave expansion in (10a) is not valid for χ → 0 when
θ = π/2 and M 	= 0 and hence the phase velocity of the unstable mode is different
from 3 in this region. For χ = 0.01, the second surface mode propagates upstream
with cR � −0.5 while the Marangoni mode propagates downstream with cR � 1.5. For
χ = 20, the phase velocity of the first mode is close to 3. Notice that for χ = 20, the
phase velocity of all three modes is qualitatively similar to that for χ =0.01.

4. Reduced nonlinear models
4.1. Kuramoto–Sivashinsky limit

For the purely hydrodynamic instability with M = 0, it is well known that in the
vicinity of the point where the neutral stability curve intersects the χ-axis in figure 3(b),
a weakly nonlinear long-wave expansion yields the Kuramoto–Sivashinsky (KS)
equation first derived by Shkadov (1973) (see also Nepomnyaschy 1974; Lin 1974;
and Demekhin, Demekhin & Shkadov (1983)). This expansion is of small amplitude
and hence the neutral wavenumber α0 must be small. However, α0 can be small with
different parameter conditions. One approach, for example, presumes near-critical
conditions, Re → Re∗. The derivation of the KS equation for M = 0 then typically
involves the use of the method of multiple scales, with a small parameter ε = α0 such
that Re − Re∗ = O(ε2), and a transformation of the equations in a frame moving with
the long-wave linear phase velocity 3.

In our case we have a second critical point where α0 = 0: this is the point where
the lower branch of the neutral stability curve in figure 3(b) intersects the χ-axis.
The KS equation then applies in the vicinity of the two critical points given by (11)
or when the two branches coalesce into a single curve very close to the χ-axis, i.e.
α0 → 0. From the dispersion relation in (10a), α2

0 = − (Re − Re∗)/c3 and hence there are
different possibilities for α0 to approach zero: (i) Re − Re∗ → 0, c3 fixed; (ii) c3 � 1,
Re − Re∗ fixed; (iii) Re − Re∗ → 0 and c3 � 1. The magnitude of c3 is affected by
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We Re, assuming that all other parameters are fixed. Hence, c3 � 1 is equivalent to
We Re � 1. These different parameter conditions to achieve a small α0 will in general
lead to different weakly nonlinear equations. The derivation of these equations for
the falling film problem in the absence of Marangoni effects is discussed in detail by
Chang & Demekhin (2002).

A simple derivation of the KS equation can be obtained using an approach
suggested by Whitham (1973) for conservative systems of the type considered here,
∂h/∂t + ∂q/∂x = 0. For such systems one can postulate (on either empirical or
theoretical grounds) that there is a functional relation between q and h, q = q(h).
This functional relation can be easily obtained from the one-dimensional version of
(2a) by setting all time and space derivatives equal to zero, effectively assuming a slow
variation in time and space (this assumption can be easily justified for the long-wave
instability with α0 → 0 considered here). We then have

q = h3. (12a)

Similarly, from the interface temperature equation (4),

Ts =
BiTair

1 + Bih
h = − 1 + Bi

1 + Bih
h. (12b)

A better approximation for q and Ts can be obtained by assuming that q, Ts are also
functions of the derivatives of h (the assumption that q depends linearly on h and
its gradient hx employed by Whitham leads to Burgers’ equation). To obtain these
higher-order approximations for q and Ts we consider (2a), (4) in a frame moving
with the long-wave linear phase velocity 3 (so that ∂/∂t → ∂/∂t − 3∂/∂x), since as a
first approximation all waves are moving with the speed 3. We further assume that
∂/∂t − 3∂/∂x � − 3∂/∂x and we set up the iterative schemes

qn+1 = h3 + Reh2 ∂qn

∂x
− 2

5
Reh2 ∂

∂x

(
(qn)2

h

)
− cot θh3 ∂h

∂x

+
Re We

3
h3 ∂3h

∂x3
− 1

2
Mah2 ∂Ts

∂x
(13a)

and

T n+1
s =

BiTair

1 + Bih
h + Pe

h2

1 + Bih

∂T n
s

∂x
− 7

120
Pe

h

1 + Bih
T n

s

∂qn

∂x

− 9

20
Peqn h

1 + Bih

∂T n
s

∂x
(13b)

for n= 0, 1, . . . with q0 and T 0
s given by (12). This approximation implies that both

q and Ts are adiabatically slaved to h and they depend on time only through the
dependence of h on time. For simplicity we take Ma =O(1). At the next approximation
with n= 1 we obtain

q = h3 + 3Reh4 ∂h

∂x
− 2Reh6 ∂h

∂x
− cot θh3 ∂h

∂x
+

Re We

3
h3 ∂3h

∂x3
− 1

2
Mah2 ∂Ts

∂x
. (14)

For α0 → 0 the deviation of the interface amplitude from 1 is small. We then substitute
h ∼ 1 + ĥ with ĥ � 1 in (14) to obtain

q ∼ 1 + 3ĥ + 3ĥ
2
+ Reĥx − cot θĥx +

We Re

3
ĥxxx − 1

2
Ma

∂Ts

∂x
(15)
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so that to leading order ∂q/∂t ∼ ∂ĥ/∂t ∼ − 3∂q/∂x, as we assumed in the derivation
of (13). Notice that in (15) terms of O(ĥĥx) and higher have been neglected. Indeed
we can easily show from the long-wave approximation that ĥĥx � ĥ2. Also we have
assumed We Reĥxxx � ĥĥx , a condition which will be examined later on once we assign
an order of magnitude for all our parameters with respect to α0. Finally, Tsx ∼ ĥx to
leading order.

We now substitute h ∼ 1 + ĥ into the first-order correction for the interface
temperature from (13b) to obtain

Ts ∼ −1 − 1

1 + Bi
ĥ + Pebĥx (16a)

where

b =
7

40

1

1 + Bi
− 11

20

1

(1 + Bi)2
. (16b)

Substituting (16a) into (15) yields

q ∼ 1 + 3ĥ + 3ĥ
2
+ Reĥx − cot θĥx +

We Re

3
ĥxxx − 1

2
Ma Pebĥxx. (17)

Hence, the ĥx term in (16a) contributes a ĥxx term to the expression for the flow
rate. As we have already neglected terms of O(ĥĥx) in (14) the term Ma Pebĥxx can
be retained at this level of the approximation provided that Ma Pebĥxx � ĥĥx . We
shall return to this condition later on when we assign an order of magnitude for the
amplitude ĥ with respect to α0. Notice that the only nonlinearity in (17) is ĥ2 which
originates from the flow rate expression (12a).

The kinematic boundary condition in (2c), with the moving coordinate
transformation ∂/∂t → ∂/∂t − 3∂/∂x and h ∼ 1 + ĥ, yields

∂ĥ

∂t
+ 6ĥ

∂ĥ

∂x
+ a1

∂2ĥ

∂x2
+ a2

∂4ĥ

∂x4
+ a3

∂3ĥ

∂x3
= 0, (18a)

where

a1 = Re − cot θ +
Ma

2(1 + Bi)
= Re − Re∗, (18b)

a2 =
We Re

3
, (18c)

a3 = − 1
2
Ma Peb =

Ma Pe

16(1 + Bi)2
(
3 − 7

5
Bi

)
. (18d)

This equation without the ĥxxx term is the KS equation we seek. With the addition
of this term, (18a) becomes the generalized KS or Kawahara equation whose
solitary wave solutions and time-dependent behaviour have been scrutinized by
Kawahara (1983) and Kawahara & Toh (1988). A detailed phase-space analysis
of all solitary wave solutions of this equation including multi-hump solitary waves
has been performed by Nekorkin & Velarde (1994). The laminarizing effects of
dispersion have been analysed in detail by Chang, Demekhin & Kopelevich (1993a)
who constructed bifurcation diagrams for the periodic and solitary stationary wave
solutions of this equation, and also examined their linear stability. Chang, Demekhin
& Kopelevich (1995) and Chang, Demekhin & Kalaidin (1998) analysed the response
of solitary pulses to radiation wave packet disturbances and showed that pulse–packet
interactions are dominated by the spectrum of the pulses. Finally, the Kawahara
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equation can be viewed as a particular case of the more general Korteweg–de Vries–
KS–Velarde equation that describes the evolution of the free surface of Marangoni–
Bénard liquid layers heated from above (the equation contains the additional nonlinear
term (ĥĥx)x). Issues related to existence of solitary wave solutions of this equation
and solitary wave interactions/head-on collisions have been addressed by Christov &
Velarde (1995) while a detailed review of all these weakly nonlinear prototypes is
given by Nepomnyashchy, Velarde & Colinet (2002).

It should be noted that the dispersion relation obtained from (18a) yields only one
root. This is effectively the usual hydrodynamic mode for a falling film in the absence
of Marangoni effects appropriately modified by the Marangoni effects. This mode
was discussed in detail in § 3. The other two modes are not captured by our weakly
nonlinear expansion which is based on the assumption of a slaved flow rate and
temperature field. Equivalently, the two stable roots of the full dispersion relation in
(9) are slave modes and have been adiabatically eliminated.

Let us now examine the order of magnitude of the various terms in (18a). We
first consider the possibility Re − Re∗ fixed, say O(1), and c3 � 1. From (1b) this
corresponds to γ � 1 (in the derivation of IBL, We Re = O(ε−2) with respect to the
long-wave parameter ε that measures the gradient ∂/∂x – see discussion by Kalliadasis
et al. 2003). This is a realistic limit for liquids like water (γ = 3000), alcohols (γ = 100–
300) and mercury (γ = 30000) – see for example Reid et al. (1977). Alternatively, the
case We Re � 1 can also be satisfied in microgravity conditions where the effective
gravity is small.

With We Re ∼ ε−2 ∼ α−2
0 , the term We Reĥxxx in (15) is of O(α0ĥ) and hence domi-

nates the neglected terms of O(ĥĥx) = O(ĥ
2
α0) in this equation. The capillary force

term in (18a) is of O(α2
0 ĥ). The instability term is also of O(α2

0 ĥ). So to balance the

nonlinearity ĥĥx with these two terms we must have ĥ = O(α0). We can also obtain
that the time-derivative term balances the nonlinearity, instability and dissipation
terms on the long time scale t ∼ α−2

0 . Hence, all terms in (18a) are of O(α3
0) with the

exception of the dispersion term Ma Pebĥxxx which is of O(α4
0) and hence must be

neglected. Recall that we kept the term Ma Pebĥxx in (17) assuming that it is larger
than terms of O(ĥĥx): in fact Ma Pebĥxx ∼ ĥĥx as indicated by the dominant terms
in the weakly nonlinear equation (18a). Notice here that Pe cannot be large for our
iterative scheme in (13b) to be valid.

As a result, the weakly nonlinear stage of the instability for strong capillary forces
is governed by the KS equation and not the Kawahara equation. Let us now consider
the possibility Re − Re∗ → 0 and c3 fixed, say O(1). This implies that We Re is also
O(1) which of course violates the basic assumption of strong capillary forces for the
IBL derivation. Nevertheless, the question of whether or not Kawahara’s equation is
applicable at the weakly nonlinear stage of the instability within the context of our
IBL model is still relevant.

With c3 = O(1) and Re − Re= (α2
0) (as is obviously the case from the dispersion

relation in (10a)) both the capillary-force term and the instability terms in (18a) are
of O(α4

0 ĥ). To balance the quadratic nonlinearity with these two terms we must have

ĥ = O(α3
0). Therefore, the term We Reĥxxx in (15) is of O(α6

0) and hence dominates

the neglected terms of O(ĥĥx) = O(α7
0). The time-derivative term also balances the

nonlinearity, instability and dissipation on the long time scale t ∼ α−4
0 . Hence, all terms

in (18a) are of O(α7
0) with the exception of the dispersion term which is of O(α6

0)! As
a result, to obtain Kawahara’s equation from our IBL approximation we must have
Pe= O(α0). This implies that Ma Pebĥxx in (17) is of O(α6

0) and hence dominates the
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neglected terms of ĥĥx = O(α7
0) in this equation. Notice that the dispersion coefficient

a3 in the Kawahara equation (18a) changes sign at Bi= 15/7 � 2.1
We can also derive (18a) from a ‘rigorous’ approach using the method of multiple

scales. Let us take the case Re − Re∗ → 0 and c3 =O(1). We introduce slow variables
T0 = t , T1 = αn

0 t and X =α0x, so that

∂

∂t
=

∂

∂T0

+ αn
0

∂

∂T1

,
∂

∂x
= α0

∂

∂X
(19a)

and expand the unknown film thickness, flow rate and free-surface temperature field
as

h ∼ 1 + αm
0 H (T0, T1, X), (19b)

q ∼ 1 + αk
0Q(T0, T1, X), (19c)

Ts ∼ −1 + α�
0Θ(T0, T1, X). (19d)

We also assume that Pe= O(α0). Substituting (19) into the full (one-dimensional)
system (2a–c), (4) we obtain as a first approximation, ∂H/∂T0 + 3∂H/∂X = 0, and
hence, to leading order, the waves do not have dispersion, dissipation or supply
of energy. We substitute ∂/∂T0 = − 3∂/∂X in (19) (this is equivalent to considering
from the outset our equations in a reference frame moving with the long-wave linear
phase velocity 3) and examine the next approximation. At this stage we keep only
terms quadratic in H and we try to balance the dominant nonlinear term HHX

with the other terms. This algebraic exercise is rather tedious and we only present
the order assignments of each term in (19) relative to α0. To balance nonlinearity,
dispersion and supply of energy, the proper choice for the expansion ansatz in (19) is
n=4 and m = k = � = 3. These exponents are consistent with the order of magnitude
assignments t ∼ α−4

0 and ĥ ∼ α3
0 to obtain the Kawahara equation (18a) using the

iterative procedure we described above. The final result is exactly (18a). A similar
methodology can be used when c3 � 1 and Re − Re∗ = O(1). In this case, n= 2 and
m = k = � = 1.

All the above derivations presuppose the orders of the parameters and retain only
the relevant terms at each order of the long-wave expansion. Notice that the values
for the exponents in (19) are such that Q and Θ can be eliminated, resulting in a
single equation for H in the weakly nonlinear stage of the instability. This elimination
is due to the fact that two of the roots of the dispersion relation in (9) are stable.
A different approach has been suggested by Whitham (1973): the linearized version
of the model equation at the weakly nonlinear stage of the instability can be readily
obtained by noticing that there is a direct correspondence between the dispersion
relation in (10) and the linearized differential operator of this model equation. For
example the terms −iω ≡ −iαc and iα of the dispersion relation should correspond to
the derivatives ∂/∂t and ∂/∂x of the model equation respectively. The same approach
was adopted by Nepomnyashchy et al. (2002). However, we have three variables,
h, q and Ts , and hence our linearized operator of the model equation should be a
matrix/differential operator so that the model equation will in general be different

from (18a) which is a single equation for ĥ since q and Ts have been adiabatically
eliminated (recall that as a result of this elimination the dispersion relation of the
reduced model equation has only one root instead of three). In the particular case,
however, when Re − Re∗ → 0 and c3 � 1 we can write down a single equation for ĥ
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using Whitham’s approach. From the expansion for the phase velocity in (10),

∂ĥ

∂t
+ 3

∂ĥ

∂x
+ c1

∂2ĥ

∂x2
− c2

∂3ĥ

∂x3
− c3

∂4ĥ

∂x4
= 0,

since c1 = a1, c2 = − a3 +O(Re − Re∗) and c3 ∼ − a2. This equation in a frame of
reference moving with velocity 3 is the linearized version of (18a).

Finally, notice that the transformation

t →
√

2
3
a

−5/4
1 a

3/4
2 t, x →

√
a2

a1

x, ĥ →
√

2
3
a

3/4
1 a

−1/4
2 ĥ

converts (18a) into

∂ĥ

∂t
+ 6ĥ

∂ĥ

∂x
+

∂2ĥ

∂x2
+

∂4ĥ

∂x4
+ ∆

∂3ĥ

∂x3
= 0

which contains the single parameter ∆ =
√

2/3a3a
1/4
1 a

−1/4
2 . In the limit ∆ → 0, our

model equation is free of parameters.

4.2. The Joo, Davis & Bankoff equation

The equation developed by Joo et al. (1991) (subsequently referred to as the
JDB equation) was discussed in the Introduction. In the absence of evaporation
effects/intermolecular forces and in terms of the variables and dimensionless groups
adopted here their evolution equation for the film thickness can be written in the
form

∂h

∂t
+

∂q

∂x
= 0, (20a)

q = h3 +
We Re

3
h3 ∂3h

∂x3
− cot θh3 ∂h

∂x
+

6

5
Reh6 ∂h

∂x
− 1

2
Mah2 ∂

∂x

{
BiTair

1 + Bih
h

}
. (20b)

An equation very similar to the JDB equation (20) can be derived from the one-
dimensional version of our IBL approximation in (2a–c), (4). Here we follow the ap-
proach developed by Ruyer-Quil & Manneville (1998) to obtain a Benney-type
evolution equation from the IBL approximation for the isothermal falling film. The
approach is similar to the procedure outlined in § 4.1. Let us assume that both
the interface temperature Ts and the flow rate q are adiabatically slaved to the film
thickness h and depend on time only through the dependence of h on time. As a
first approximation set all derivatives in (2a), (4) equal to zero to obtain (12a, b).
These expressions for the flow rate and interface temperature are exact solutions
for the problem, provided that the free-surface gradient is small. When this is no
longer the case corrections have to be introduced. For this purpose we consider
slow modulations to the uniform flat-film solution and expand the flow rate and
interface temperature as q = q0 + q1 + · · ·, Ts = Ts0 + Ts1 + · · · where q0 ≡ h3, Ts0 =
BiTairh/(1 + Bih) and q1,2,..., Ts1,2,... are O(ε), O(ε2) etc. with respect to the long-
wave parameter ε that measures the gradient ∂/∂x. These expansions are then sub-
stituted into the one-dimensional version of (2a), (4) and we retain terms up to O(ε)
in (2a) and up to O(1) in (4). For example, ∂q0/∂t =3h2∂h/∂t = 3h2(−∂q0/∂x −
∂q1/∂x − · · ·) ∼ −3h3∂q0/∂x = −9h4∂h∂x = O(ε). The result is

q1 =
We Re

3
h3 ∂3h

∂x3
− cot θh3 ∂h

∂x
+ Reh6 ∂h

∂x
− 1

2
Mah2 ∂

∂x

{
BiTair

1 + Bih
h

}
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where the capillary force and Marangoni terms are taken to be O(ε) with
We Re = O(ε−2) and Ma =O(1).

This approach can be easily formulated in an iterative scheme to obtain the higher-
order corrections for the flow rate and interface temperature. The evolution equation is
then obtained from ∂h/∂t + ∂(q0 + q1)/∂x = 0 up to O(ε) which leads to an equation
very similar to the JDB model except that the coefficient of the inertia term is 1
instead of 6/5. This difference is simply due to the assumption of a self-similar
parabolic profile for IBL. Recall from the previous Section that this assumption
leads to estimating critical conditions with a 20% error compared to the Orr–
Sommerfeld stability analysis of the full Navier–Stokes equation and the usual long-
wave lubrication approximation. Indeed, the dispersion relation obtained from the
JDB model in (20) is

c = 3 − iα3 We Re

3
+ iα

(
6

5
Re − cot θ

)
+

1

2
iα

Ma

1 + Bi
(21)

which yields the critical condition

6

5
Re +

Ma

2(1 + Bi)
= cot θ (22)

with a 6/5 coefficient in front of Re instead of 1 in (11a) obtained from IBL.
As a result, when (22) is written in terms of the dimensionless groups χ , B and
M , it is exactly the same as the critical condition obtained by Goussis & Kelly with
coefficients 15/16 and 5/4 in (11b) instead of 9/8 and 3/2. The agreement with the full
Navier–Stokes equation persists up an O(1) value of the Reynolds number – see the
comparison of the long-wave approximation in the presence of thermocapillary effects
with the full Navier–Stokes equation performed by Krishnamoorthy, Ramaswamy &
Joo (1995) and Ramaswamy, Krishnamoorthy & Joo (1997). However, by analogy
with the long-wave approximation in the absence of thermocapillary effects, we
anticipate that the Benney-type JDB equation (20) will have similar limitations. We
shall return to this point in § 5 when we compare the solitary wave solutions of the
IBL and JDB approximations. Notice here, that like the KS equation derived in § 4.1,
the JDB dispersion relation in (21) predicts only one mode. Hence neither approach
captures the upstream propagating surface mode and Marangoni mode obtained from
the IBL dispersion relation in (9).

A point to be noted here is that a temperature field adiabatically slaved to the film
thickness has often been used in the literature (Joo et al. 1991; Burelbach, Bankoff
& Davis 1988; Bankoff 1994; Oron 1999; Oron & Peles 1998; Scheid et al. 2001).
This is a consequence of the long-wave approximation for the temperature adopted
by these authors. Obviously, the temperature field is indeed slaved to the thickness
when Pe � 1. In this limit, convection is negligible compared to heat diffusion and the
interface temperature is simply given by Ts0. If we further assume that Re � 1, IBL
and the JDB model are identical. Hence, the usual long-wave expansion is a limiting
case of IBL for Re = Pe=0. However, it is very difficult to achieve Pe= 0 in practice;
for example in the experiments by Kabov (1998) on the thermocapillary instability
of a thin liquid film falling down a vertical substrate heated by a local heat source,
the Péclet number is O(1) or even larger. Clearly, convection at finite Péclet numbers
will lead to a downstream convective distortion of the surface temperature profile
Ts0 which assumes negligible convection. Alternatively, the temperature field is slaved
to the film thickness when the deviation of the film thickness from 1 is small. This
implies that the region of applicability of the JDB equation is effectively the same
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as that of KS equation obtained in § 4.1 and hence Benney-type model equations are
essentially restricted to small amplitudes and cannot describe finite-amplitude waves
as is often claimed in the literature.

4.3. Model equation for strong Marangoni forces, χ → 0

In the linear stability analysis of § 3, we demonstrated that for small Reynolds numbers
the influence of the Marangoni effect is sufficiently strong that the maximum growth
rate of the downstream propagating mode is large. In fact, it increases as the Reynolds
number (or χ) decreases. Let us consider the case χ → 0 (not to be confused with
the case a1 = Re − Re∗ → 0 utilized in § 4.1 to obtain the KS equation) which can be
achieved with h0 → 0.

For small Reynolds numbers, it is reasonable to assume that the flow rate is slaved
to the film thickness. An approach similar to that outlined in §§ 4.1 and 4.2 then
yields

q = h3 − cot θh3 ∂h

∂x
+

We Re

3
h3 ∂3h

∂x3
− 1

2
Mah2 ∂Ts

∂x
. (23a)

The interface temperature field may or may not be slaved to the film thickness. This
depends on the size of the Péclet number. Since Pe= Re Pr, for a given fluid Pr is
fixed and we cannot really vary Re and Pe independently. In this case, Re → 0, implies
Pe → 0 and Ts is given by (12b). But Bi= Bχ1/3 → 0 so that

Ts = −h (23b)

and our evolution equation in this limit becomes

∂h

∂t
+

∂

∂x

[
h3 − cot θh3 ∂h

∂x
+

We Re

3
h3 ∂3h

∂x3
+

1

2
Mah2 ∂h

∂x

]
= 0. (24)

As we pointed out in § 4.2, in the limit Re = Pe=0, the JDB and IBL approximations
are identical.

Consider now the coefficients of the capillary force and Marangoni terms in (24).
From the definitions of We and Ma in (1b, d)

We Re

3
=

γ

32/3Re2/3(sin θ)1/3
,

1

2
Ma =

1

2

3M

181/3Re2/3(sin θ)1/3
.

Hence, for a fixed liquid and as χ → 0, both capillary and Marangoni forces scale
as χ−2/3. Interestingly, for a falling film in the absence of Marangoni effects,
the destabilizing inertia terms are vanishing in the limit χ → 0. In our case, the
destabilizing terms are surface forces and are still present as χ → 0. The stabilizing
terms are also surface forces with the same dependence on χ . As a result, the cut-
off wavenumber α0 above which the linear growth rate of the trivial solution h =1
becomes negative is independent of χ . These observations are also consistent with
the existence of a finite α0 at which the neutral stability curve in figure 3(a) intersects
the α-axis as χ → 0. We note that from a physical point of view, the term h3 in (24)
associated with the gravitational component in the streamwise direction is a ‘friction
force’ while the term − cot θh3hx in (24) associated with the hydrostatic head in the
direction perpendicular to the wall is a ‘spring force’ and hence is not responsible for
the instability – in fact a linear stability analysis of the trivial solution h = 1 in (24)
shows that − cot θh3hx is always stabilizing. For large inclination angles this term
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can be safely omitted. In this limit, saturation of the linear growth must involve a
balance of the nonlinear convective term (h3)x and the two surface-force terms in (24).
One can render this balance more precise by rescaling time and spatial coordinates
according to

∂

∂t
= φ

∂

∂τ
,

∂

∂x
= φ

∂

∂ξ
,

and choosing φ so that the coefficients of the Marangoni and capillary forces in (24)
are equal:

φ =
35/6M1/2

21/2(18)1/6γ 1/2
. (25a)

This yields the nonlinear evolution equation

∂h

∂τ
+

∂

∂ξ

[
h3 +

1

δ
h3 ∂3h

∂ξ 3
+

1

δ
h2 ∂h

∂ξ

]
= 0 (25b)

which contains the single parameter

δ =
4γ 1/2

35/6M3/2
Re2/3(sin θ)1/3. (25c)

Hence, in the limit of χ → 0 and for large inclination angles, the behaviour of the
interface depends on δ only and it is universal for all Re, M and γ .

5. Solitary waves
We now seek one-dimensional travelling wave solutions propagating at a constant

speed c. A Lagrangian transformation of the one-dimensional mass balance equation
in (2c) with x → x − ct and ∂/∂t = − c∂/∂x in the moving frame then yields −chx +
qx =0 which can be integrated once, and we fix the integration constant by demanding
h, q → 1 as x → ±∞. This gives a relation between the flow rate and the film thickness:

q = c(h − 1) + 1. (26)

We also introduce the moving coordinate transformation in the one-dimensional
versions of (2a) and (4), which by utilizing (26) yield

−c2 dh

dx
+

6

5

d

dx

{
[c(h − 1) + 1]2

h

}
+

3

2

cot θ

Re
h

dh

dx

= Weh
d3h

dx3
+

3

Re

(h − 1)(h2 + h + 1 − c)

h2
− 3

2
Ma

dTs

dx
(27)

and

−c
dTs

dx
+

7

40

Ts

h
c
dh

dx
+

27

20

(c − 1)h + 1

h

dTs

dx
+

3

Pe

{
Bi(Ts − Tair)

h
+

Ts

h2

}
= 0, (28)

where Tair = −(1 + Bi)/Bi. These equations, together with the boundary conditions

h → 1, Ts → −1 as x → ±∞, (29)

with all the derivatives of both h and Ts approaching zero as x → ±∞, define a
nonlinear eigenvalue problem for the solitary wave velocity c. The solitary wave solu-
tions of our IBL approximation will be contrasted with the solitary waves obtained
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Figure 5. Solitary pulse in an extended domain for χ = 7.5, M = 75, Pr= 1, B =10 and
γ =3000.

from the JDB equation (20) which in the moving frame can be written as

d

dx

[
−18

25
h5 +

3 cot θ

Re
h2

]
= Weh

d3h

dx3
+

3

Re

(h − 1)(h2 + h + 1 − c)

h2
− 3

2

Ma

Re

dTs

dx
(30)

subject to h(±∞) = 1. Ts is slaved to the film thickness and is given by

Ts =
BiTair

1 + Bih
h. (31)

We solve numerically the IBL system (27), (28) and the JDB equation (30) with
a global Fourier spectral expansion in the streamwise coordinate x. Details of
the numerical scheme are given by Bunov, Demekhin & Shkadov (1984), Chang,
Demekhin & Kopelevich (1993b) and Kalliadasis et al. (2003).

In all our computations we take θ = π/2 and the maximum value of the Reynolds
number does not exceed 20. In fact, when the Reynolds number is larger than ∼30–
40, two-dimensional solitary waves become unstable to disturbances in the transverse
direction (Alekseenko et al. 1994). In this region of ‘large’ Reynolds numbers, the
stabilizing capillary forces are not strong enough to arrest the large destabilizing
inertia forces and an instability in the transverse direction develops. Figure 5 shows a
typical solitary pulse in an extended domain for the ‘moderate’ value χ = 7.5 (which
gives Re =5) and the large value M = 75, with Pr = 1, B =10 and γ = 3000 (water has
γ = 3000 but Pr =7). Here we shall focus on single-hump solitary waves. Notice that
the wave has a width ∼100 and an amplitude ∼2 such that our long-wave assumption



326 S. Kalliadasis, E. A. Demekhin, C. Ruyer-Quil and M. G. Velarde

–0.98

–1.00

–1.02

–1.04

0 50 100 150 200 250 300 350 400

Ts

x

Figure 6. Interface temperature distribution for the parameter values in figure 5. The solid
line is obtained by solving the system (27), (28) and the dashed line by solving (27) with the
temperature field given by (31).

is satisfied. The shape of the solitary pulse in figure 5 is qualitatively similar to the
solitary pulses computed for the falling film in the absence of Marangoni effects.
This ‘generic’ solitary wave shape consists of a big hump with a gentle sloping back
edge and a steep front edge preceded by a series of small, decaying bow waves. This
oscillatory structure in front of a solitary pulse is due to energy dissipation (on short
wavelengths). For the Kawahara equation (dissipation is represented by a fourth-order
derivative), Kawahara & Toh (1988) demonstrated that increasing dissipation leads
to enhanced oscillatory structure in front of the pulses. A detailed characterization of
our solitary pulses using techniques from dynamical systems theory (see for example
Nekorkin & Velarde 1994) is beyond the scope of the present study; nevertheless we
anticipate that the solitary pulse in figure 5 corresponds to a homoclinic orbit of the
dynamical system (27), (28) with a large loop followed by damped oscillations toward
the fixed point connected to the loop. Note that since the front-running capillary
waves correspond to the local dynamics near the fixed point (h, Ts) = (1, −1), a simple
linear analysis shows that the bow waves have a wavenumber close to the neutral
wavenumber α0.

Figure 6 depicts the interface temperature distribution for the parameter values in
figure 5. The solid line is obtained by solving the system (27), (28) and the dashed
line by solving (27) with Ts slaved to the film thickness and given by (31). The system
(27), (31) is obviously different from the JDB model in (30), (31) where both flow rate
and temperature fields are slaved to the film thickness. Clearly, for Pr = 1, the two
systems give a similar temperature distribution. Notice that Ts is also a solitary pulse
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Figure 7. Interface temperature distribution for Pr = 7. All other parameter values are the
same as figure 5. The solid line is obtained from (27), (28) and the dashed line from (27), (31).

with a shape similar to the interface configuration in figure 5. figure 7 shows the free-
surface temperature distributions for Pr= 7. Notice that the temperature distribution
obtained from (31) (dashed line in figures 6 and 7) is slaved to the film thickness and
hence is independent of Pr. The free surface itself is not shown as the solitary wave
shape of Figure 5 remains practically the same for the range of Pr values considered
here. This is simply due to the fact that for moderate χ the influence of Marangoni
effects (and therefore the influence of the temperature field on the instability), is small
(see § 3).

Evidently, on increasing the Prandtl number, the difference between the two tem-
perature profiles becomes more pronounced and the approach of Ts slaved to h gives
an erroneous prediction for the temperature field. The difference between the two
approaches is due to the fact that the energy flux in the full IBL model of (28) has
two components, diffusion and convection, instead of diffusion only for the slaved
profile in (31). For long waves, convection is dominated by ∂(vT )/∂y and indeed
our computations show that this term is very important. Of course for long waves
v is small, but as the Prandtl number increases (equivalently as Pe increases) the
convective term ∂(vT )/∂y in the energy equation becomes large and increases the
heat flux in the y-direction. For the slaved profile in (31), however, the heat flux is
only due to the diffusion term (1/Pe)∂2T/∂y2.

Figures 6 and 7 also demonstrate that increasing Pr and hence Pe increases the
amplitude of the bow waves at the front of the primary hump for the temperature
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Figure 8. (a) Free-surface solitary wave for Pr = 1, χ = 0.15. (b) free-surface solitary wave
for Pr = 7, χ = 0.45; M = 75, B = 10 and γ = 3000.

pulse. This is simply due to the fact that increasing Pe increases energy dissipation.
Notice that for the slaved temperature pulse, the maximum amplitude of the bow
waves at the front of the pulse is rather large compared to the amplitude of the pulse.
This might imply that the temperature pulse is not stable and will be destroyed in
time-dependent numerical experiments. Such experiments along with issues related to
convective instabilities of solitary pulses are beyond the scope of the present study –
see the work of Chang et al. (1995) on the destruction of solitary pulses of Kawahara’s
equation by expanding radiation packets and the study by Kliakhandler, Porubov &
Velarde (2000) on the solitary wave selection process from a given initial condition
for the Korteweg–de Vries–KS–Velarde equation.

Figure 8(a) shows a free-surface solitary wave for Pr= 1, χ = 0.75 and M = 75
while figure 8(b) shows a free-surface solitary wave for Pr =7, M = 75 and the O(1)
value, χ = 0.45. For small to O(1) values of χ , dissipation is gentle and the bow
waves at the front of the primary solitary hump have a much smaller amplitude than
the maximum amplitude of the hump – contrast with figure 5 where χ and therefore
energy dissipation are large. Hence, the solitary structures in figure 8 are likely to be
more robust in time-dependent computations than the one in figure 5.

The maximum amplitude of the solitary wave in figure 5 is larger than the maximum
amplitude of the solitary wave in figure 8 even though χ in figure 8 is smaller than χ in
figure 5. This is because the influence of the Marangoni effect on the hydrodynamics
becomes large in the region of very small χ (see § 3). In fact, we shall demonstrate
that in this region, the maximum amplitude of the solitary waves increases as χ

decreases. Notice also that even though the amplitude in figure 8 is smaller than that
in figure 5, relative to the flat-film thickness the free-surface deformation in figure 8
is larger than that in figure 5; indeed, the solitary wave amplitude is reduced from
about 2.7 in figure 5 to about 1.7 and 1.3 in figure 8 but the film thickness is reduced
by a factor of (7.5/0.15)1/3 ≈ 3.7 and (7.5/0.45)1/3 ≈ 2.6 respectively. This is because
the role of free-surface deformation is important in the region of small χ .

Figure 9(a) shows the free-surface temperature distribution for Pr = 7, χ = 0.15
and M = 75. Despite this value of Pr, the Péclet number is sufficiently small that the
temperature distribution is a weak function of Pr when Pr changes from 1 to 7. Hence,
the profile obtained for Pr= 7 is almost identical to the one computed for Pr =1.
At the same time, small Pe implies small dissipation and so the oscillatory structure
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Figure 9. Interface temperature distributions for small and O(1) values of χ . Solid lines
obtained from (27), (28) and dashed lines from (27), (31) are practically indistinguishable:
(a) Pr =7 and all other parameter values are the same as figure 8(a)/(b) Pr = 1 and all other
parameter values are the same as figure 8(b)/(c) parameter values as in figure 8(b).

in front of the primary hump for the temperature solitary wave has a maximum
amplitude much smaller than that of the primary hump. Therefore, we expect that
such temperature profiles are robust in time-dependent numerical experiments. Notice
that the two temperature distributions, slaved and not slaved (the solid line is obtained
from (27), (28) and the dashed line from (27), (31)) are practically indistinguishable
in the region of small χ , even for the ‘large’ value Pr =7. The difference between the
two profiles decreases further as Pr decreases.

In figures 9(b, c) we give the temperature distribution for different values of Pr
with all other parameters the same as in figure (8b). In all cases, the two temperature
distributions, slaved and not slaved, are practically indistinguishable and hence the
assumption of a slaved temperature distribution is valid in the region of small to O(1)
values of χ . Notice also that increasing χ reduces the amplitude of the bow waves
relative to the maximum amplitude of the primary solitary humps, as expected.

We now examine in detail important features of our solitary waves, namely their
speed c and maximum amplitude hmax. In figures 10 and 11 the solution branches
obtained from the full IBL system (27), (28) as a function of χ for Pr= 7, γ = 3000
and different values of M , are contrasted with those obtained from the JDB system
(30), (31) for the same values. We first discuss the IBL branches. The case M =0
corresponds to a falling film without Marangoni effects. As χ → 0 both speed and
maximum amplitude tend to infinity. This is the ‘interesting’ behaviour we referred
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Figure 10. Solitary wave speed, c, as a function of χ for B = 10, Pr= 7, γ = 3000 and different
values of M . The solid lines correspond to the IBL model and the dashed line to the JDB
model in (30), (31).

to in § 3 where we demonstrated the existence of a finite α0 as χ → 0 for M 	= 0 so
that the influence of thermocapillary convection on hydrodynamics becomes large for
small χ (very thin films) – see also the large growth rate of the unstable mode in
figure 4(a). The region χ → 0 is of particular interest as in this limit the role of
deformation is large and we expect large-amplitude waves relative to the flat film
thickness. Notice that at a sufficiently large χ the different M curves in figures 10 and
11 merge into a single curve which eventually asymptotes to c ≈ 7.7 and hmax ≈ 3.6
for large χ . In this region of large χ and hence large film thickness, the surface
Marangoni forces are not important compared to the dominant inertia forces. The
only case when there is no singularity at χ = 0 is M = 0, i.e. in the absence of
Marangoni forces; however at any small but finite M , we have c, hmax → ∞ as χ → 0.
Finally, our computations indicate that the dependence of c on M is practically linear
in the region of large χ and is nonlinear for small χ .

We have also traced the solitary wave solution branch by using (27) with slaved
temperature field given by (31). Interestingly, the full IBL system (27), (28) and the
system (27), (31) give very similar results for the speed c and amplitude hmax of the
solitary waves as a function of χ . However, the temperature field computed from
the two approaches is different, with the difference becoming large for moderate and
large χ – see figures 6 and 7. Nevertheless, for large χ , i.e. thick layers, the influence
of the temperature field on hydrodynamics is negligible. On the other hand, for small
χ , i.e. thin films, the convective terms of the energy equation are negligible since in
this case Pe � 1 and the temperature field is given by (31).
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Figure 11. Maximum amplitude, hmax, of the solitary waves as a function of χ for different
values of M . All other parameters are the same as figure 10. The solid lines correspond to the
IBL model and the dashed lines to the JDB model (30), (31).

Let us now consider the JDB model where both flow rate and temperature field
are adiabatically slaved to the film thickness. The most striking difference with IBL is
that the bifurcation diagrams for c and hmax obtained from the JDB equation exhibit
limit points and multiplicity with two branches, a lower branch and an upper branch.
These limit points occur at specific values χ∗(M). In all cases the upper branch tends
to infinity as χ → 0 while the lower branch tends to 3 for M =0 and infinity for
M 	= 0. This lower branch and for very small χ is in agreement with our IBL results;
indeed, in this limit the JDB equation (20) reduces to the IBL equation (24). The
agreement between the two approaches persists up to approximately χ∗, the location
of the limit point, above which the JDB equation does not predict the existence of
solitary waves. Hence, the situation is similar to the falling film problem in the absence
of thermocapillary effects where the long-wave approximation and IBL give similar
results up to an O(1) value of χ . Our computations reveal that the existence of the
upper branch for the JDB equation is due to the inertia term (6/5)Reh6hx . Hence,
although this term yields the critical condition (22), which is exactly the same as the
one obtained by Goussis & Kelly (1991), it also leads to branch multiplicity and limit
points for the solitary wave solutions. This upper branch might well be an attractor
in time-dependent computations, but such computations are beyond the scope of the
present study.

The M = 0 curves were first computed by Pumir, Manneville & Pomeau (1983) who
also demonstrated that the Benney-type evolution equation for the free surface exhibits
finite-time blow-up behaviour for χ >χ(0). Obviously, this unrealistic behaviour is
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related to the non-existence of stationary travelling waves in this region. As has been
pointed out by several authors (see for example Rosenau, Oron & Hyman 1992), the
limit points and branch multiplicity predicted by the usual long-wave approximation
is a false prediction which indicates failure of the long-wave approximation. Of
course none of these limitations are an issue in the region of very thin films where
the Reynolds number is small and Benney’s approach is exact, as we have already
pointed out. At the same time, for M = 0, the region of applicability of the JDB model
is the same as that of the KS equation, i.e. when h is close to 1 and the speed of the
waves on the interface is close to 3. IBL, however, predicts the continued existence
of travelling wave solutions without introducing any limiting χ values and for M = 0
the IBL solution branches are in quantitative agreement with the boundary-layer
(Demekhin et al. 1987) and full Navier–Stokes equations for moderate Reynolds
numbers (Demekhin & Kaplan 1989; Salamon et al. 1993; Ramaswamy et al. 1996).
Finally, it should be noted that the differences between the bifurcation diagrams
for the two approaches – recall that solving (27), (31) gives very similar results to
(27), (28) – indicate that the assumption of a slaved flow rate, and not a slaved
interface temperature field, is critical in accurately determining important features of
the free-surface solitary waves such as speed and maximum amplitude (of course, the
assumption of a slaved temperature distribution is not an accurate representation of
the temperature field, as we have already emphasized).

We close this Section by examing in detail the solitary wave solutions for χ → 0. In
this limit, our IBL approximation reduces to the model equation (25b). This equation
is very similar to the equation used by Kalliadasis & Chang (1994) and by Chang
& Demekhin (1999) to describe the evolution of a thin film coating a vertical fibre.
Indeed, replacing the nonlinearity h2 in (25b) with h3 gives the evolution equation
adopted by those authors. In terms of the scalings used by Kalliadasis & Chang,
the coefficient of the axial curvature term h3hξξξ is 1 while the coefficient of the
term h3hξ that describes the azimuthal curvature variation in the axial direction
is (Re We/3)2/3/R2, with R the dimensionless fibre radius (scaled with the flat-film
thickness h0).

We now seek travelling wave solutions of (25b) in the form h(ξ ), with ξ → ξ − ct ,
and c the wave speed. Introducing this moving coordinate transformation in (25b),
integrating the resulting equation once, and fixing the integration constant by
demanding h → 1 as ξ → ±∞, gives

h3 d3h

dξ 3
+ h2 dh

dξ
+ δ[h3 − 1 − c(h − 1)] = 0. (32)

Figure 12 depicts (single-hump) solitary pulses as a function of δ with δ small. Clearly,
with decreasing δ, both wave amplitude and width increase. From the definition of
δ in (25c) we see that increasing M leads to decreasing δ which in turn results in
increasing hmax, as expected since large M has a large effect on the hydrodynamics.
At the same time, increasing θ results in increasing δ and hence reducing hmax, as
expected since for large inclination angles the flow is dominated by the inertia forces.
Similarly, increasing Re increases δ and hence hmax, as expected. We notice here that
the growth of c and hmax in figures 10 and 11 as χ → 0 is not a true blow up, as other
forces which would arrest the singularity are present in the limit χ → 0. These are
the long-range attractive van der Waals interactions between the solid and the gas
phase separated by the liquid phase – these forces have been included in the study by
Joo et al. (1991). Such interactions depend on an appropriately non-dimensionalized
Hamaker’s constant that would introduce a lower bound on the rate at which χ
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Figure 12. Solitary pulses for different values of δ, in the region δ � 1, for the model
equation (25b).

approaches zero. Nevertheless, the existence of large-amplitude structures in the
region of small χ indicates that the system would approach a series of drops in time-
dependent computations. Each of these drops should resemble a solitary wave for the
free surface. Indeed standard techniques from dynamical systems theory show that
in a neighbourhood of a solitary pulse in the parameter space there exists an entire
family of stationary solutions, some of which are periodic in x, with speeds c close
to the solitary wave speed. A periodic wave generated by an (infinite) solitary pulse
resembles a solitary periodic wavetrain with each of the structures in the train similar
to the infinite-domain solitary pulse. In time-dependent computations the dynamics of
the drop-formation process might include phenomena related to coalescence between
smaller and larger waves – we shall discuss this point later. Of course, the final state
of the system depends on the wetting characteristics of the liquid–solid pair. Indeed,
completely wetting fluids should form a series of drops separated by a very thin flat
film (such a film can only be sustained when the liquid is completely wetting) and
partially wetting fluids should form a series of drops separated by dry solid substrate –
in this case the van der Waals interactions will cause film rupture and dewetting.
Again, the limit χ → 0 implies large deformation, and indeed the deformation is large
compared to the film thickness that links the drops (in case of wetting fluids). But the
actual size of the drops is expected to be small, so that the region hmax → ∞ is never
approached. Evidently, for this drop-formation process surface tension must be large
as we have already assumed.

We notice here that from the definition of δ in (25c) we can obtain a lower bound on
the rate at which this parameter tends to zero. Indeed, δ ∼ (We Re)1/2/Ma3/2 which with
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Figure 13. (a) Speed, c, and (b) maximum amplitude, hmax, of the solitary pulses in figure 12
as a function of δ, in the region δ � 1.

We Re ∼ ε−2 yields δ ∼ ε−1/Ma3/2. For δ � 1, Ma � ε−2/3. For the derivation of our IBL
approximation, ε � Ma � 1/ε (see Kalliadasis et al. 1993). Hence, ε−2/3 � Ma � ε−1,
which gives a tighter lower bound on Ma. At the same time, Ma � 1/ε, which
gives ε−1/Ma3/2 � ε1/2 or δ � ε1/2. Hence, δ can approach zero but at a rate slower
than ε1/2.

Figure 13 shows c = c(δ) and hmax = hmax(δ). Both c and hmax blow up to infinity
as δ → 0. Note that we also performed the computations for c and hmax in figure 13
by including the term − cot θh3hx in (24). Our numerical results indicate that this
term is important only in the two thin-film regions at the front and back of the
large-amplitude solitary hump in figure 12 but it does not affect the hump itself.
Hence, in the limit of small film thicknesses, the hydrostatic head in the direction
perpendicular to the wall and inertial forces as well as heat transfer conditions on
the free surface (Bi → 0) are not important. The only important forces are ‘friction’
(associated with the mean flow induced by gravity), Marangoni and capillary forces. As
a consequence, the bifurcation diagrams for c and hmax as a function of δ in figure 13
are independent of the inclination angle. This then implies that the bifurcation
diagrams in the figure are universal for all θ, Re, Ma and γ .

The above observations indicate that the situation here is similar to the problem
studied by Kalliadasis & Chang (1994) where the solitary wave speed is a monotoni-
cally increasing function of (Re We/3)2/3/R2 and blows up to infinity. For the fibre
problem, the matched asymptotic analysis carried out by these authors for infinitely
large homoclinic orbits demonstrated that the speed of the solitary waves blows up to
infinity as (Re We/3)2/3/R2 → 1.413 from below. In our case, however, there is no crit-
ical value for δ and solitary waves exist for all δ. An approach similar to Kalliadasis &
Chang’s for c → ∞ is beyond the scope of the present study. Nevertheless, preliminary
analysis of (32) as δ → 0 indicates that the solitary structures in figure 12 consist of an
‘outer’ region obtained by balancing the axial curvature h3hξξξ with the Marangoni
term h2hξ and a Bretherton-type ‘inner’ region (Bretherton 1961), h3hξξξ ∼ δc(h − 1).
The analysis also indicates that, even though in figure 12 the maximum amplitude
blows up to infinity faster than the width of the solitary waves, in terms of the original
variables h and x (recall that we have rescaled x using φ in (25a)) the amplitude blows
up to infinity slower than the width without violating the long-wave approximation.

Finally, for the problem of a thin film coating a vertical fibre, Chang & Demekhin
(1999) demonstrated that the solitary pulses on the surface of the film can grow by an
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order of magnitude to form localized drops much larger in dimension than the film
thickness away from the pulses. These authors also found that the drop formation
process is mainly driven by a mechanism in the form of an ever-growing solitary pulse
which leaves behind a trailing film thinner than the one it advances into. Moreover,
the growing solitary pulse not only accumulates liquid from the film but also captures
smaller (and therefore slower) pulses in a series of coalescence cascades. It is this
coalescence cascade by a trailing solitary pulse that eventually leads to drop formation.
The similarity between our solitary wave solution branch and the solution branch for
the fibre problem indicates a similar scenario for our Marangoni problem.

6. Summary
We have considered the long-wave instabilities on the surface of a thin film falling

down a uniformly heated wall in the region of small to moderate Reynolds numbers.
The flow was modelled using the IBL approximation of the Navier–Stokes/energy
equations and free-surface boundary conditions. In two-dimensions, IBL results in
a system of three partial differential equations for the evolution of the local film
thickess, flow rate and free-surface temperature distribution in time and space.

We analysed the linear stability of the flat-film solution with respect to two-
dimensional and three-dimensional disturbances and demonstrated that by increasing
either the inclination angle or the Marangoni number, the instability region (for the
downstream propagating mode) becomes larger. We then focused on two-dimensional
disturbances. For such disturbances we obtained two instability regions in the (χ, α)-
plane associated with two different instability mechanisms for large and small χ

respectively. For large χ (large film thicknesses, small deformation) inertia forces
dominate Marangoni forces, while for small χ (small film thicknesses, large deforma-
tion) Marangoni forces dominate inertia. These two regions merge into a single
instability region at zero wavenumber for sufficiently large M .

Our linear stability analysis shows the existence of three modes of instability: two
surface modes propagating downstream and upstream respectively and a Marangoni
mode. The only unstable mode is the downstream propagating surface mode. This is
the usual hydrodynamic mode of instability for a falling liquid film. Its growth rate
is found to be large and hence the thermocapillary effects act so as to amplify the
hydrodynamic mode.

We then considered reduced models for the evolution of the free surface. We
demonstrated that depending on the order of magnitude of the different parameters
and on the way the neutral wavenumber approaches zero, in the weakly nonlinear
stage of the instability we obtain either the KS or Kawahara’s equation. In the
limit χ → 0, the IBL approximation reduces to a single nonlinear equation for the
film thickness. This equation contains only one parameter δ, suggesting a universal
behaviour for the free surface in this limit. Finally, we examined the single-hump
solitary wave solutions of IBL (with and without a slaved temperature field), Joo et al.
equation and the model equation for χ → 0. In all cases, the IBL approximation with
and without a slaved interface temperature give quite similar results for the free
surface. However, the two approaches give different temperature distributions for the
free surface with the difference between the two increasing as χ increases.

The solitary wave solution branch for the Joo et al. equation is in agreement
with the one obtained from IBL up to an O(1) value of χ at which the Joo et al.
branch shows multiplicity and limit points above which solitary waves do not exist.
On the other hand, the solitary wave solution branch of IBL does not exhibit any
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limit points/branch multiplicity. An important feature of the solution branch obtained
from both the Joo et al. equation and IBL is that as χ → 0 (in this limit the two
models are identical) both speed and solitary wave amplitude approach infinity, while
for large values of χ , both speed and amplitude asymptote at a value which is
independent of M . In the limit χ → 0, the solitary wave solution branch of the model
equation with the single parameter δ approaches infinity as δ → 0. This, however, is
not a true singularity formation, as forces of non-hydrodynamic origin, namely van
der Waals forces not included here, become increasingly important in the region of
very thin films and will arrest this blow-up behaviour.

Finally, there are are a number of arising questions from the analysis presented here.
For example, it would be interesting to undertake a detailed comparison of the linear
stability properties of our IBL approximation with the full Navier–Stokes/energy
equations. Preliminary calculations indicate that IBL, despite the discrepancy for the
critical conditions, predicts very well quantities like maximum growth wavenumbers
and maximum growth wavelengths even for large Reynolds numbers. Although these
preliminary comparisons for the linear stability properties of our IBL approximation
with the full Navier–Stokes/energy equations are encouraging, our modelling can
still be improved as we stated in § 3 in order to correctly predict the threshold of
the instability close to the zero wavenumber limit and extend IBL to the region of
large Reynolds numbers. In the absence of Marangoni effects this has been achieved
using refined polynomial expansions and weighted residual techniques (Ruyer-Quil
& Manneville 2002). Moreover, these authors took into account the second-order
viscous terms which have been neglected in the present study. Indeed, these terms
play an important role for the dispersion of the waves for larger Reynolds numbers.
Therefore, a more refined modelling of the thermocapillary flow taking into account
the second-order diffusive terms of the Navier–Stokes/energy equations and using
high-order weighted residual techniques will follow (Ruyer-Quil et al. 2003).

At the nonlinear regime of the instability there are a number of problems to be
addressed, for example, construction of the stationary waves, periodic and multi-hump
solitary waves of our IBL approximation, and the stability of these waves with respect
to two-dimensional and three-dimensional perturbations. In addition, of particular
interest would be time-dependent computations, especially in the region of small χ ,
and a matched asymptotic analysis for δ → 0 to construct the infinitely large solitary
waves in this limit. All these issues will be addressed in a separate study.
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